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ABSTRACT

" Given two Banach spaces X and Y over K = R or C and a parametrized family
A(p) € (X, Y) with u € K, partial and algebraic multiplicities of any value
Bo € K such that A(po) if Fredholm with indgx zero are defined by the means of
generalized Jordan chains. These notions are developed in close connection
with bifurcation problems and we show that partial and algebraic multiplici-
ties are not affected by Lyapunov-Schmidt reduction. Properties of invariance
under equivalence are also established. These general results are wused to
give a proof of Magnus' generalization of the classical bifurcation theorem by
Krasnoselskii through a somewhat more natural approach than his. But the con-
vincing evidence of the usefulness of the notions developed here has to be
found in a new and wide extension of the B&hme-Marino-Rabinowitz theorem on
bifurcation for gradient operators, the ancestor of which is also due to

Krasnoselskii.
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1. INTRODUCTION

In 1976, Magnus [13] introduced a generalized notion of algebraic multi-
plicity for values o of the scalar parameter u at which a given parametrized
family A(u) of linear operators acting between Banach spaces becomes singular.
He wused this concept to prove various local and global bifurcation theorems
generalizing the well known result by Krasnoselskii [1ll] about bifurcation at

a characteristic value with odd algebraic multiplicity.

Magnus’ definition of algebraic multiplicity requires using a sequence of
projections, as is briefly reviewed later on in this section. Here, we shall
also develop a generalized notion of algebraic multiplicity which will eventu-
ally be shown to coincide with Magnus’ one, but our approach is rather dif-
ferent. Instead of a sequence of projections, our definition involves en-

eralized Jordan chains. We have found many advantages in doing so. Firsct, it

is our feeling that the resulting definition is both simpler and more intui-
tive. More important is the fact that generalized Jordan chains permit the
use of the so called root functions which often allow one to replace tedious
combinatoric or - other arguments by an elementary proof. Most significant of
this property is our proof that Lyapunov-Schmidt reduction does not affect the
algebraic multiplicity. This was not established by Magnus and, indeed,
seems difficult to prove in his approach. Using this result, it becomes pos-
sible to parallel one of the classical proofs of Krasnoselskii’s theorem to

obtain Magnus' generalization of it in a somewhat more natural way than his.

But the decisive argument in favor of generalized Jordan chains is that
algebraic multiplicity is derived from the more refined notion of partial mul-
tiplicities. It is to be noted that Magnus, too, introduces partial multipli-

cities which, however, differ from ours. Incidentally, he makes no use of
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them except as a sometimes convenient terminology. In sharp contrast, the
partial multiplicities considered here play a crucial role to establish gen-
eralizations of the theorem by Krasnoselskii [1l1] on bifurcation for gradient

operators, subsequently improved by BShme [2], Marino [14] and Rabinowitz

[17]). Our contribution differs in that the versions we give are not limited
;i} to nonlinear eigenvalue problems and deal with general equations of the form
3522 F(u, x) = 0, far bevond the currently available results. Aside partial multi-
:i? plicities, the related proofs involve analytic perturbation theory for linear
‘- operators and a preliminary bifurcation theorem in the finite dimensional case

E%S based on Conley index and showing that, for gradient operators, bifurcation is
;Eés guaranteed by a change of Morse index of the linearization.

T

g%ﬁ Other by-products of our analysis are a third definition for the alge-
':és braic multiplicity, a fourth one being that of Ize [9], known to be identical
,;;b with the definition by Magnus. Invariance of partial and algebraic multipli-
i:\; cities under equivalence is also established and used to formulate correspond-
i; ing bifurcation theorems when bifurcation is studied from a known branch of

it
\ cﬁ solutions instead of the trivial branch.

)

o e .

f:‘ Our approach to multiplicities through generalized Jordan chains closely
]E:E follows Gohberg, Lancaster and Rodman [7] who consider the finite dimensional
¢ and polynomial case. Because neither of these assumptions 1is typical in
TS
Eg; applications to bifurcation problems, variants of the proof presented in [7]
i?ﬁa need to be given, especially those involving determinants. Despite that the
Y
‘,. infinite dimensional framework has reportedly been investigated in the complex
;Ei; and analytic case by the Russian school (also responsible for the introduction
:Zéz of generalized Jordan chains in the mid forties) we have not found available
‘E:: references for the real and nonanalytic case.
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We will be considering a parametrized family A(up) € Z(X, ¥Y) with X and Y
Banach spaces over K = R or € and g varying in some open and connected neigh-
borhood of 0 in K. However, in our exposition, we shall 1limit ourselves to
K = R since all the definitions and results that make sense can be extended to
K = C without modification (except for shorter proofs at times). Also, the
parametrized family A(u) will always be "smooth", which means "of class'€”.
Whenever a result is proved for smooth families, it can be generalized to fam-
ilies with only some finite regularity, but the smoothness assumption is con-

venient for expository purposes.

Before we introduce generalized Jordan chains, let us briefly recall how
(algebraic) multiplicity is defined by Magnus in [13]. Suppose that A(0) is
Fredholm with index zero. If A(0) € Isom(X, Y), the algebraic multiplicity of
u =0 in A(u) is defined to be 0. Otherwise, set A(O)(p) = A(u) and, given an

arbitrary projection n, with range the null-space Ker A(0), set, for u = O

0

Ay () = 5 A gy (T + Ay () (T = m)

and, for u = 0

A(l)(O) - A'(o)(O)wo + A(O)(O)(I - ro)
A(l)(O) € Isom(X, Y), the multiplicity of g = 0 in A(u) is defined to be

dim Ker A(0Q). As A(l)(O) is Fredholm with index zero in any case, and if

(0) € Isom(X, Y), one may define a new family A () by repeating the

Aoy

same procedure (note that A

(2)

(p) is smooth). In other words, choosing a pro-

(1)

jection n, with range the null-space Ker A

(0), set, for u = 0

1 (1)

(2)(#) (l)(#)” + A(l)(“)(I - ”0) '

and, for u = 0

A(Z)(O) = A'(l)(O)n1 + A<1)(O)(I - wl)
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If A(z)(O) € Isom(X, Y), the multiplicity of u = 0 in A(p) is defined to be
dim Ker A(l)(O) + dim Ker A(0). Otherwise, A(2)(O) is Fredholm with index

zero and A(z)(u) is smooth, so that a new family A(B)(p) is defined. Assuming

that this process stops at rank x (i.e. (0) € Isom (X, Y)), the multipli-

A
(x)
city of uy = 0 in A(u) is defined by

=1
Y dim Ker A

% 1)

Multiplicity of o in A(u) is defined to be the multiplicity of g =0 in

A(p + “0)'

As mentioned before, our approach will be different. But, in any case,
let us make it clear right now that there is an actual need for a definition
of algebraic multiplicity. In particular, it cannot be overemphasized that
the generalized null space of A(0) has nothing to do with the algebraic multi-
plicity of u = 0 in A(p), except when A(u) = A0 - ul. This is because alge-
braic multiplicity must relate to the whole family A(u) and not merely to the
operator A(0), If X =Y = Rm, the order of the root u = 0 in det A(u) pro-
vides a useful definition (totally unrelated to the generalized null-space of
A(0)) and the problem becomes one of suitably generalizing this notion when X

and Y are arbitrary Banach spaces.
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GENERALIZED JORDAN CHAINS; ROOT FUNCTIONS

Let then X and Y be real Banach spaces and A(u) a smooth mapping of the
real parameter g with values in the space Z(X, Y). The function A(u) need

only be defined for u on a neighborhood of the origin. For j > 0, we shall

set
A = 175183 0y (2.1)

A family (eo, - ,el) of £+ 1 vectors of X such that e0 » 0 and

J o )

‘Z Aiej_i -0,0<j<12, (2.2)

i=0
will be called a generalized Jordan chain of A(u). For j = 0, note that
AO = A(0). From (2.2), one has Aoeo = 0: as eo » 0, existence of generalized
Jordan chains requires Ker AO » {0}. It is readily seen from the definition

that e, exists if and only if

2

) Aje, ) € Range A

i=1 0

From this observation, a natural definition for a maximal chain follows as
being one that cannot be continued. 1In this paper, we shall exclusively be

concerned with the case when Ker AO is finite dimensional and when no general-

ized Jordan chain can be continued indefiritely. Actually, the stronger
assumption that the length of all maximal chains is wuniformly bounded from
above by a positive integer will be made. But in the case of interest when
AO = A(O) is Fredholm with index =zero, we shall later see that the two

requirements are the same. Of course, the length of a chain must be under-

stood as the number of its elements.

In the hypothesis that the length of all maximal chains is wuniformly

bounded from above, we can define "canonical sets" of generalized Jordan

.
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chains according to the following process: given e

0™ 0 in Ker AO' call x(eo)

the maximal length of all the generalized Jordan chains originating at ey
Such an integer x(eo) is defined without ambiguity and n(eo) is wuniformly

bounded as eO runs over Ker AO - {0}. As n(eo) takes integral values, it fol-

lows that an element e € Ker A, — (0} exists for which x(e

O,l 0 X 1s max-

0,1’ = "1

imal. We thus obtain a generalized Jordan chain

(eO,l' e, enl—l,l)

with maximal length among all possible generalized Jordan chains. In a second

step, we select ey 5 by requiring that n(eO 5) ==, be maximal among all values

n(eo) for e, € Ker AO not collinear with ey |- This yields a generalized Jor-

dan chain

(30,2’ cee s e _1,2)
2
Of course, 52 < Ky follows from the definitions. More generally, having
chosen j generalized Jordan chains originating at &g 1+ -+ 1&g ; respec-
tively, we select eO,j+l by requiring that n(ej+1) - Kj+l be maximal among all
values n(eo) for e, € Ker A0 not in the span of {eO,l' e ’eO,'}' Hernce,

there is a generalized Jordan chain

(eg,541 - ’enj+l—l,j+1) '

with ~j+l < Kj' Clearly, if Ker Ay is finite-dimensional. the process can be

repeated until n = dim Ker A elements e

0 have been selected.

01 ’eO,n

The set of generalized Jordan chains

((eo,j, LR ,exj_l;j) ’ lsj Sn)

with =, > Koy > 000 >k > 1 is called a canonical set of generalized Jordan

chains.
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Remarks: 1) If X = Y and A(u) = ul = L, L € /(X), a generalized  oro.
of A(u) 1is nothing but a Jordan chain of L corresponding to

g = 0. 2) Unlike Jordan chains, generalized ones need not be made o:
independent elements. 3) Our definitions (in particular tha:t of a
set) duplicate those in [7] when X = Y = R™ and A(p) 1Is a polvronioo,
Canonical sets of generalized Jordan chains are not uniquelw desi:.

ever, we shall see below that the integers « ,nn are independers

l v

canonical set. O

From the definitions, it is clear that 2 is the same for everv canor!

set of generalized Jordan chains. Set

K, = {e, € Ker A, — {0} , »c(eo)

1 0 0 RS

- and let E.1 denote the subspace of Ker AO generated by K., namely the sma.lc¢se

1

subspace of Ker AO containing Kl' It follows that dim El equals the maximur
number of linearly independent elements in K

1 Denote by £ the dimension o

E,. Let e ..., e

1 01 be the first elements of a canonical set of general-

O,n

’

ized Jordan chains. From the definition, it is immediate that e 1 e
, [

are linearly independent elements of Kl' so that Ky = 200 =k, and

b (2.2

El = span {eO,l’ . ,eo’z

The set K, and hence both the space E

1 and its dimension £ are independent of

1

any particular choice for a canonical set of generalized Jordan chains. and

the above thus shows that « Ce LK

1 are also independent of the canonical

£

set. Independence is then proved if £ = n. If £ < n, Kol is (from (2.32) and

the definition) the maximum of n(eo) as eO runs over (Ker AO) - E,. Then,

just as K1 Kol is independent of the canonical set. Consider

K, = {e, € Ker A, — (0} , n(eo) > K )

2 0 0 £2+1

YT Tr T N
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so that n(eo) - Ky Or«K for e, € K,. If E, denotes the space generated by

2+1 0 2 2

KZ’ one has E2 ») El so that dim E2 = f+k (k > 1). Clearly, £ + k coincides

with the maximum number of linearly independent elements in K2 and

eO,l' .. ,e0’2+k are linearly independent elements of K2, hence

E, = span {e

2 01" " %0, 24k’

while Kopl = °°° = Ky As El and E2 as well as their respective dimensions

£ and £+k are independent of the canonical set of generalized Jordan chain, so

is k=2 + k- 2. It follows that

n£+1, e ’~2+k are independent of the
e canonical set. Repeating this procedure as many times as necessary yields
e
);ﬁ independence of Kiv oo oR regarding the choice of the canonical set of gen-
o)
W
Aft’ eralized Jordan chains. The integers Ko oo okp will be called the partial
{f’ multiplicities of u = 0 in A(p) and the number
.
N
i \";-\
() - eee +
.:$? Y= + L (2.4)
’ its algebraic multiplicity.
~LN
v.'-"."
-.'.\
:}}: We now introduce the notion of root function (root polynomial in [7]).
A
o

Given any ey ™ 0 in Ker AO’ we call root function corresponding to e, a smooth

(&

W function e(u) with values in X such that e(0) = eo and define the order of
N -
1
ny e(up) to be that of the zero p = 0 in A(u)e(u). Suppose then that e(u) hes
o
) ”
e order £ + 1 > 1. Setting
®
Ll L .
U -— <
:&% ej - 3 e (0) , 0<j< 2,
A R
_ﬁx and equating to zero the coefficient of pJ in the Taylor expansion of A(u)e(u)
"".
‘,' (obtained from those of A(y) and e(u)) one finds that (eo, ,eB) is a gen-
."0?
.$h$ eralized Jordan chain of A(u). In particular, the order of a root function
Y
‘“1§ never exceeds the largest partial multiplicity Ky Conversely, given a gen-
'v....
‘k_‘ eralized Jordan chain (eo, . ,eg) of A(u), then
-
o
)
ot
e
0
Vo
e
o~

Tl Y Yy WY WY W ' "'ﬁﬂ\:ﬂ'\-'\}'-"h ) '\‘t‘*) \}'\"’i\ 'Y"l'\_;\'"!"\'\w""\f“r'}{\ ’l"\'}‘\ '\l"‘\ % Y N " .“" .. ." X
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is a root function of order > £ + 1 for every smooth function §(u). Root func-

tions are essential to make generalized Jordan chains a powerful tool for
theoretical investigation. They even appear to be virtually indispensable in
some of the proofs. A first example of their usefulness can be found in the

proof of the following important result.

Proposition 2.1: Let B(u) and C(u) be smooth mappings with values in Z(Y) and

Z(X) respectively and suppose that B(0) and C(0) are linear isomorphisms.

Then, (EO, EE) is a generalized Jordan chain of B(u)A(u)C(u) if and only
if

e-%l(l)() 0<j<4

j i=0 i j—i ’ T '

is a generalized Jordan chain of A(u).

When X = Y = R® and A(p) is a polynomial, the proof of this statement can be
found in [7, Proposition 1.11, p. 29]. In the context of this paper, it has
also been given in (16, Proposition 2.2]). Although [16] deals with the case
dim Ker Ao = 1, the proof 1is equally valid in general and hence will not be

given again. Proposition 2.1 can actually be established without the help of

root functions but becomes a rather cumbersome exercise in combinatorics.
The following corollary is immediate.

Corollary 2.1: Let B(p) and C(u) be as in Proposition 2.1. Then, u = 0 has

the same partial and algebraic multiplicities in A(u) and in B(u)A(p)C(u).

Remark 5: More generally, in both Proposition 2.1 and Corollary 2.1 the map-

ping B(+) (resp. C(+)) may take values in z£(Y, Y) (resp. £(X, ¥)) with Y and ¥
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(resp. X and X) isomorphic Banach spaces. O

Another characterization of the algebraic multiplicity.

For every integer p > 1, definedé% € t(Xp, Yp) by

d—p- .. (2.5)

We shall repeatedly use the trivial observation that for p > 2,;‘—p_1 identi-
fies with the (p-1)x(p-1) upper left corner as well as with the (p-1)x(p-1)

lower right corner ofﬂ'p.

Suppose now that £y <= is the maximal length of the generalized Jordan

chains of A(u) and let p > K- Then, if (eo,

have ey = 0 for otherwise it is immediate that (eo, e 'ep—l) is a general-

e € Ker , one must
p—l) *p

ized Jordan chain of A(u) with length p > x,, a contradiction. Thus, for

1)

P>k an element of Keru*h has the form (0, e It is then

1’ 1o ’ep~1)'

obvious that (el, . ,ep_l) € Kera}p_l. The converse 1is just as trivial

since the mapping

p-1 p

(eo, C 'ep—Z) € X (0, eqr .- ’ep-2) e X
induces a canonical injection of Kerakb_l into KerJFp. Summing up, we have
that, to within canonical identifications, the sequence Kerif; stablizes for

pznl.

Conversely, suppose that there is a smallest integer k > 1 such that

Ker kel Kera‘k. Then k = x,. Indeed, let (eo, . €

) be a generalized

1 p-1

L
i.(



»
4
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.
iQ Jordan chain of A(u) with length p > k. Clearly, (eo, C. ,ep_l) € Keru‘;.
- In particular, (eo, R ,ek) € Kerd‘k+l. But, since Kerlék+l - Ker’+i, one c
i! must have eo = 0, contradicting the fact that (eo, .. 'ep—l) is a generalized
.. Jordan chain. This shows that £y < k. To prove K12 k, recall that
Ker;"k_l » Ker-?‘"k by definition of k (assuming k > 2, but the problem is obvi-
!! ous if k = 1). Hence, there is (eo, . 'ek-l) € Ker)‘k with e, » 0, which

means that (eo, e ’ek—l) is a generalized Jordan chain of A(u) with length k t
:? so that k < «,. :
o -1 \
o As a result of dim Ker AO < o, one finds that Ker b is finite dimen-
s

sional for every p > 1. It turns out that the algébraic multiplicity i
;& Y= R R e bR is nothing but
> y = dim Kerj} = dim Kerd_ , ¥p > x, . (2.6)
Q‘J Kl p 1

The proof of this statement is postponed until we can make use of a 1local

. A

Smith form (cf. Section 4). Relation (2.6) shows that calculation of the
;: algebraic multiplicity amounts to calculation of a null-space, which may have
>

some importance in the applications.

Remark 6: If AO = A(0) € Isom(X, Y), it is consistent with the definitions and \
;\ results of this section to define the partial and algebraic multiplicities of
g =0 in A(u) to be 0. Also, for any Ko # 0, the partial and algebraic multi-

!
?ﬁ plicities of o in A(u) are defined as those of u = 0 in A(p + po). o
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3. GENERALIZED JORDAN CHAINS AND LYAPUNOV-SCHMIDT REDUCTION

77,

With X and Y being real Banach spaces as in the previous section, let us

T - -

consider a ‘31 mapping F(= F(u, x)) from R x X to Y, locally defined near the

origin and satisfying

-

X

s = 'i s
A EARKEE:

\ F(p, 0) = 0 . (3.1)
,‘ 1\"‘
[, It is the aim of this paper to discuss conditions ensuring bifurcation of

N

“~
,;g solutions to F = 0 from the trivial branch x = 0 and near the origin (0, 0). &
4 -~ ~
"I

Assuming that DXF(O, 0) is a Fredholm operator with index zero, it is a stan-

AT,
S
l"!l

dard procedure to make the problem into a finite dimensional one through the

'::. so called Lyapunov-Schmidt reduction. We shall denote by Xo and Y0 the null-
'n".‘
"y space and range of DXF(O, 0) respectively, and make the choice of (topologi-
4.5‘.
':.:: cal) complements X1 of Xo and Yl of Yo. For x € X, we shall set
(AL
o
} X =€+ X
bt 1
H,",' according to X -Xo ® Xl,and call QO and Q1 the (continuous) projections onto

A YO and Y1 respectively. Writing the equation F(u, x) = 0 as the system

) QOF(“, € + xl) - 0 ’

\l (3.2)
;:‘:‘ : QlF(#, € + xl) -0,

D

b it follows from QODXF(O’ O)Ix being an isomorphism of X, to Y, that the first

35 1 Lo

. equation is solved through the Implicit function theorem in the form

_ X = ¢(p, €,

where ¢ is of class 81 on a neighborhood of the origin in R xXO with values in

v > X, and verifies
v 1

o] ¢(u, 0) =0 . (3.3)
:9:’:
%,'.. For future use, note that differentiating the identity QOF(p, € + d(p, €)) m 0
'.
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v
,
w.r.t ¢ and setting ¢ = 0 results in 3
"
QoD Fn, 0)(1XO + D ¢(u, 0)) =0 . (3.4)
"]
In particular, this yields ;
k
"
D€¢(O, 0) =0 . (3.9 k.
Substituting x1 - ¢(u, €) in the second equation (3.2) leads to the reduced %
—_— '
equation s
]
'
f(/“v E) - QlF(#v € + ¢(""’ €)) - 0 ’ (3'6) .
equivalent to F(p, x) = O near the origin. As usual, the mapping f will be ,
'l
referred to as the reduced mapping of F. §
¢
Whenever it is smooth, the mapping f
%
A(p) = D F(u, 0) € ZL(X, Y) (3.7) v
,
satisfies the general conditions of Section 2. In particular, &
AO = A(0) = DxF(O, 0) has a finite dimensional null-space and all the notions f

previously developed for A(u) make sense. Now, setting

a(p) = Def(“’ 0) € I(Xo, Y (3.8)

1) ’

the same comment applies to a(u). Indeed, although Dcf is merely continuous,

-
A e

Def(p, 0) is smooth. To see this, note that from (3.4) and (3.7)

-

D,(u, 0) = ~[QuAW) I, 17 QAW Ix )
1 0

- -
Pt

is smooth since A(u) is smooth and hence, upon differentiating (3.6)

a(p) = QlA(#)(IXO + D ¢(s, 0)) , (3.9)

is smooth, too. Theorem 3.1 below shows that Lyapunov-Schmidt reduction

preserves all the properties of generalized Jordan chains.
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Theorem 3.1: The length of the generalized Jordan chains of A(u) 1is (uni-

‘
v

PP
2 L

Z
2,

formly) bounded if and only if the length of the generalized Jordan chains of

o—

a(p) is (uniformly) bounded. Moreover, in this case, the partial multiplici-

P

ties of u = 0 are the same in A(u) and a(u).

,ﬁd;ﬂ”i{a

- -
<
>

Proof: From the definitions, it suffices to show that, given any generalized

S 53

Jordan chain of A(u) (resp. a(u)), say (eo, . can find a general-

4

- e omi .
v
i
.

S
AR A

ized Jordan chain of a(u) (resp. A(u)), say . 52) with the same

’l

length and starting with the same element e

"
[
h

0

-
-s A'.

First, consider a generalized Jordan chain (eo, .. ez) of A(u) and the

& a %
}iﬂf

root function

[t
[
b T T T 2

2
e(p) = Y we, € x . (3.10)
j=o

Then, A(u)e(u) vanishes together with its first £ derivatives at u = 0, hence

Awen) = p P lag) | (3.11)

for some smooth Y-valued mapping a(u). Let y: Rxxoxxl + X be defined by

'b(”v €, xl) - (IXO + Dcé(ﬂ, O))C + xl - e([.l)

From (3.5) and (3.10), ¥(0, eo, 0) = 0. On the other hand, for

'
A
[Ny Wy S 5

TGy

(hy, hp) € X . xX, = X, one finds

01

£

Ov

Y5

]

¥(0, ey 0) « (h hl) =h. +h

0’ 0 1

D(e.xl)

-
]

R

Hence D Y(0, e

((.xl) 0 0) € Isom(XoxX X) and the solutions to ¥ = 0 near

1 [

'Ef:

-
-

(0, eo, 0) are given by a curve (¢ = eo(y). x1 - el(g)) with smooth eo(-) and

el(o). From the definition of ¢

e(p) = (IXO + D é(u, 0))egin) + e (u)

W N R TR S e L e A Yy y LELURTER - .t ST NN TS O t o VLt N
L g o » ",
:?' D aNis l. ‘ » S VAR ¢ ’ N '. AWy Wt Wl ':‘.":.l'!"'
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‘:: Explicit formulas for eo(p) and el(u) are easily obtained from the observation :
e »
that ¥ above 1is linear in (e, xl) (so that the use of the Implicit function ‘
' theorem is rather artificial here). But these formulas are not useful in what
\
< follows. With the above expression for e(u), one may rewrite relation (3.11) Ay’
LS 4
1:‘. ~
S as )
>3

g ) 2+1
A(p)(I, + D ¢(u, 0))e (u) + A(p)e, (p) = p° “alp) . (3.12) v
XO € 0 1 .

- -
*.: Recall that Q0 + Q1 IY and QOA(;J)(IXO + D€¢(p, 0)) » 0 (cf.(3.4) and (3.7)). 3
ot f'a.
Thus, (3.12) becomes 2
- 7
f_' 5'
- £+1 )
X QuA(mre, (p) + QIA(“)(IXO + D ¢(p, 0))ey(n) + QA(pIe (u) = pu° “a(p) ’
el ",
& Writing a(u) = Qoa(p) + Qla(p) and equating components yields o
5
. £2+1 ng
QOA(#)el(#) -y Qoa(u) (3.13) :_':
QAW (I, + D (s, 0))e,(w) + QA(we, (8) = s g alu) (3.14) ‘
. 1Ak X, RaE eq(n 1A w)e (u 7 108 - .
M
w3\
G As QOA(O)|X1 € Isom (Xl’ Yo), one has QOA(p)lx1 € Isom (Xl, Yo) for |u} small .
04 oo
’ enough and hence, from (3.13) >3
q 2+1 N
) e (W) = u Bm) (3.15) ]
::: with .
v c'
-1 g
?’-, Blu) = [QuAlm) 1y 1 "Qalu) . .
1 t,
L .’u
Suhstituting (3.15) into (3.14), we get ‘::«
Y 3
" 2+1 2
Q A(u) (I + D ¢(p, 0))e (u) = u (Q a(u) — QA(u)B(u)) . (3.16) -
1 XO € 0 1 1

" &
O
"‘ Due to (3.9) and since eo(O) - e0 » 0, this means that eo(u) is a root func- l*
o tion of a(p) with order at least £2+1, 1i.e. (eo, gl' e, EB) with -
« Ej - (l/j!)eéj)(O), 1l < j <2, is a generalized Jordan chain of a(u). -
]
y

At
=
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Conversely, let (eo, A ei) be a generalized Jordan chain of a(u) and

let e(p) denote the root function

2
e(u) = Zopjej € XO

j
Using (3.9), this means
! 2+1
QA (I, + D (p, 0))e(n) = u° a (u)
1 XO € 1
for some smooth Y,-valued function a,(u). As Q. A(w)(I1 + D ¢(u, 0)) = 0
1 1 0 XO €
(cf.(3.4) and (3.7)), this also reads
2+1
A(p)(I, + D ¢é(u, 0))e(u) = p~ “a, (@)
XO € 1
From (Ix + D€¢(0, 0))e(0) = e(0) = e (cf.(3.5)), we infer that
0
E(p) - (IX + De¢(g, 0))e(u) 1is a rocot function of A(u) with order at least
0
1, Lee (eq, &), ... . 5, with &, = (1/ie37(0), 1 < j <, is a general-

ized Jordan chain of A{(u), and we are done. O

Theorem 3.1 provides a good motivation for further study of generalized
Jordan chains in the finite dimensional case, which will be taken up in the
next section. As a by-product of the results presented there and Theorem 3.1,
we shall see that our definition of algebraic multiplicity coincides with that
given by Magnus in [13] (see Section 1). Indeed, 1let A(u) € L(X, Y) be a

smooth parametrized family and set F(u, X) = A(u)x, which agrees with

A(u) = DxF(p, 0). Now, define C(u) € L(X) by (setting x = ¢ + x1 again)
C(u)x = (IXO'+ D é(p, 0))e + xg
As a result of QOA(p)(IX + D£¢(p, 0)) =0, the orerator A(p)C(u) has the block

0

decomposition

-
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RN ARG

TR T Aty I R S Lt Y e Ry YRS P S O
y 3 nti 0‘1 " .. , .n A a... Rl :. .... .l...l‘\"‘ t‘.

- Ty

et vy
f ) V" .'z.':

54 ML YR 1)

b




Fiss

;.X ’_ﬁ

4

e

l‘l"l,

- re=
“ .

P

Xy

r———

P

- 17 - ‘
\ '

(a(p) QA Iy

1

]
A(p)C(p) = . !
0 QuAw) | 1
0 Xl :

upon identifying Y with Y, x Y and where a(u) is as in (3.9). Next, define

1 0’
B(p) € Z(Y) by ]
4 3 h
-1 ¢
1 —Q,A() |y, [QuAB) |, ] ;
Yl 1 Xl 0 Xl
B(u) = : .
0 I
Yo ;
so that
a(p) 0 4
B A C - 3.17
(B)A(u)C(p) o Q0A<”)‘X ( )
\]
1 \
As B(0) = I, and C(0) = IX’ it follows that g = O has the same algebraic mul- ’

tiplicity in A(u) and B(u)A(u)C(s) (Corollary 2.1) and also in B(u)A(u)C(p)
and a(p) (Theorem 2.1). As a(u) € Z(XO, Yl) and XO and Yl have the same A
dimension, it will follow from Section 4 and after obvious identifications
that the algebraic multiplicity of u = 0 in a(p) equals the order of the =zero
p =0 1in det a(u). If now multiplicity is understood in the sense of Magnus,
p = 0 has the same algebraic multiplicity in A(uw) and B(u)A(p)C(p) ([13, )
Theorem 2.4]) and also in B(u)A(u)C(p) and a(p) ([1l3, Theorem 2.7] and rela-

tion (3.17) above). Finally, in [13, Theorem 2.6] it is shown that the alge-

braic multiplicity of u = 0 in a(u) coincides with the order of the zero u = 0

in det a(u) and the assertion follows.

\‘I.’\*\'\ 'w \}‘\ .Y ", \‘\"\'\'\'¥ % %

- --" \\ 7 ° .
J‘-.\‘ “'. h.v.i.c- ""-5' foshnhomt ,c!'!!.n.hp.c’h.'s.’n',c«n.



oy e
Ry

.2 wl.*

x
P 3

A

AR,

A

LA

“'". ‘.l,.".,—f o5
ok ?‘-ﬂr'v'-f-.". -

EYE X )
=L

)
by o)

.
& . .

'
a v

2
#

."u

&.l'l &

AN
A i

- 18 -

Remarks: 1) Although Magnus’ algebraic multiplicity coincides with ours, his
partial multiplicities are different. The partial multiplicities introduced
here agree with the definition in Gohberg et al. [7]. 2) Coincidence of the
algebraic multiplicities makes complementary properties established by Magnus
available (and indeed easier to prove in his approach). For instance, given
two families A(u) € Z(X, Y) and B(up) € £(Y, Z) with Z another real Banach
space and A(0) and B(0) Fredholm with index zero, the algebraic multiplicicy
of 4 = 0 in A(u)B(u) is the sum of those in A(u) and B(u) ([13, Theorem 2.4])).
Another interesting result is that given a smooth function o(p) with ¢(0) = 0,
the algebraic multiplicity of u = 0 in A(o(u)) is k times the multiplicity of
p = 0 in A(u) where k is the order of the zero g = 0 in o(p) ({13, Theorem
2.9]). An obvious corollary is that the multiplicity of u = 0 in A(u) cannot
be made odd through any smooth change of scale in g (not necessarily a dif-
feomorphism) if it is not odd in the first place, but there are other applica-
tions. 3) Another approach is taken by Ize [9], who defines the algebraic

multiplicity of A(u) = DXF(p, 0) via the reduced mapping, 1i.e. in

a(u) = QlA(p)(Ix + D€¢(p, 0)) (cf. (3.9)), to be the order of the zero u = 0
0

in det a(p). He next proves some independence of his definition regarding
Lyapunov-Schmidt reduction. More precisely, he shows that the parity of the
algebraic multiplicity 1is independent of the Lyapunov-Schmidt reduction.
Theorem 3.1 is much stronger since it asserts that the partial multiplicities,
hence the algebraic multiplicity and a fortiori its parity, are independent of

the Lyapunov Schmidt reduction. O
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4. LOCAL SMITH FORM FOR THE FINITE-DIMENSIONAL CASE.

In this section, we continue the analysis of Section 2 when X and Y are
finite dimensional spaces with the same dimension. Fixing bases, we can then
assume X = Y = R® and that A(p) is identified with its matrix in the canonical
basis of RT. With B(p) and C(p) independent of u in Corollary 2.1, it is
immediate that the partial multiplicities of u = O in A(u) are independent of
these identifications. On the other hand, the vocabulary and methods of
matrix theory are especially convenient for the purposes of this section. Our
first aim here 1is to show that, provided that the length of no generalized
Jordan chains of A(u) is infinite, then A(u) admits a "local Smith form".

This means that for |u| small enough A(u) can be written as

A(u) = M(@)D(u)N(u) , (4.1)
where M(u) and N(u) are mxm matrices (operators) with constant nonzero deter-

minants and D(u) is diagonal of the form

K K
D(w) = diag (u "d (W), ... , w A G, d_ (W), ..., d W), (4.2)

n+l
where Ry 2 e 2k 2 1 are the partial multiplicities of u = 0 in A(g) and
di(O) # 0, 1 < i< m. Among other things, we shall see that assuming that the
length of all the generalized Jordan chains of A(u) is uniformly bounded is
equivalent to the seemingly weaker requirement that no chain can be continued

indefinitely. Other results of some practical importance will also be

derived.

When A(u) is a polynomial, existence of a local Smith form is easily
deduced from an available "global" Smith form (cf. [7]). If A(u) is not a
polynomial, there is a no global Smith form but obtaining a local one is actu-

ally technically simpler than in the polynomial case (although the basic idea

™ -"-""\-J..; 4.r f'v‘“nl‘,t‘»ﬂ\f‘t‘-, P
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is the same). In what follows, we suppose that no generalized Jordan chain of
A(u) can be continued indefinitely, and argue by induction on the dimension m
of the space R®. Ifm= 1, A(u) is a real-valued function a(u) with a(0) = 0.
It is readily checked that a generalized Jordan chain (eo, e, ei) exists if
and only if a(j)(O) =0, 0 <j <2 Impossibility of continuing a chain inde-
finitely thus amounts to saying that a(k)(O) # 0 for some index k > 1. 1If so.
one may write a(u) = pkd(p) with d(0) = 0 and the result follows with
M(p) = 1, D(p) = pkd(p) and N(p) = 1. Let then m > 2 and suppose that

(m - 1)x(m - 1) matrix-valued functions Mo(p), Do(y) and No(p) with Mo(p) and

k
NO(#) having constant nowzero determinants and Do(p) = diag(u ldl(p),
L
s "d__ (), k, >0, d(0) »0, 1 <i<m-1, can be found so that
- 2
Ao(#) Mo(u)Do(p)No(#) , (4.3)

whenever Ao(p) is a smooth parametrized faﬁily of (m - 1)x(m - 1) matrices,
none of whose generalized Jordan chains can be continued indefinitely. To
prove that the same is true with A(u) = (aij(p)) being mxm, let wus first
observe that one among the coefficients a,. (u) does not vanish to infinite

1]

A(J)(O) = 0 for every j > 0, so that every

order at the origi+. Otherwise,
root function has infinite order, a contradiction. Multiplying on the left

and on the right by appropriate permutation matrices, one may then assume that

amm(p) has finite order k at the origin, say

k
amm(p) - bmm(u) ,
with k > 0 an integer and bmm(O) » 0. Since any element aij(y) can be put in
the last row and last column through this procedure, we may as well assume

that the order of amm(y) is the smallest possible among all aij(p)'s, namely

that
.
.
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for some smooth function bij(p). Therefore, multiplying on the right by the

matrix (with determinant one)

r 3
1'
0 L4
_t-)l“-}:_bmz. . 1
b b
mm mm

“ Py
the matrix A(u) is transformed into one which has zero elements on its last
row, except for amm(p) - pkbmm(y) which is unchanged. For simplicity of nota-
tion, we now assume that A(u) had this particular structure in the first

place. Then, multiplying on the left by the matrix (with determinant one)

does not affect the last row but transforms A(g) into a matrix having =zero
elements in its last column, except for amm(p) - uk bmm(p) which is unchanged.

In summary, these operations reduce A(u) to the case when

Ag(4) 0

A(p) = ) (4.4)
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with Ao(p) a smooth family of (m - 1)x(m - 1) matrices. No generalized Jordan
chain of Ao(u) can be extended indefinitely since the block diagonal decompo-
sition (4.4) of A(u) shows that the same would be true of at least one gen-
eralized Jordan chain of A(u), a contradiction. If A(u) has been put into the
form (4.4) after multiplication by smooth parametrized families of invertible
matrices as above, the same argument works via Proposition 2.1. Using the

decomposition (4.3) for Ao(p), one finds

MO(#) 0 Do(#) 0 NO(#) 0
A(u) =
k
0 poobo (W)
This yields the desired decomposition for A(u). To be complete, one must also
observe that, upon multiplying by appropriate permutation matrices, it is pcs-

sible to assume that the diagonal elements of D(u) are arranged in decreasing

k.

order, say D(u) = diag (s 'd (4)) with k; > +++ >k . As Ker A(0) and

.Ker D(0) have the same dimension n, one has

n+l © T T km -0

From the diagonal structure of D(u), it is easily checked that no gen-

eralized Jordan chain of D(u) has length > k hence the length of the gen-

l’
eralized Jordan chains of D(u) is uniformly bounded. The partial multiplici-
ties of u =0 in D(u) are thus well defined. Using root functions, it is
straightforward to show that they coincide with kl‘ .. ,kn. From Proposition

2.1, A(u) may replace D(p) in this statement. In the notation of Section 2,

this means

», w
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Also, det M(pu) = det N(p) =1 in our construction, so that
det A(u) = det D(u). As det D(u) = p7dl(p)- 'dm(p) with di(O) #» 0, 0<i<m

and

Y=ok etk
we infer that det A(u) vanishes up to order vy at the origin. Conversely,
assuming that det A(u) vanishes up to finite order at the origin, it is easily
seen that A(u) possesses a local Smith form through arguments similar to those
used above. But we have just seen that existence of a local Smith form
implies existence of partial and algebraic multiplicities, the latter coincid-
ing with the order of the zero y = 0 in det A(u). In particular, this shows
that assuming that no generalized Jordan chain of A(u) can be continued inde-
finitely amounts to assuming that u = 0 has finite order as a zero of

det A(u). If so, the length of the generalized Jordan chains of A(u) is wuni-

formly bounded.

Application: Proof of the multiplicity formula (2.6).

Existence of a local Smith form allows for a simple proof of the multi-
plicity formula (2.6). To begin with, in a notation similar to (2.6), denote
bpr € I(YP) andcp S L(XP) the operators associated with smooth families
B(u) € £(Y) and C(u) € £(X) 1like the operatora‘5 is associated with A(u).
Clearly,uep and cp are isomorphisms whenever B(0) an C(0) are isomorphisms.

In this case

dim K = dim Ker
m era"p im Ke ‘ap“"p Cp

Recall that B(u) and C(u) can be chosen so that, in the notation of Section 3,

B{(u)A(u)C(p) has the block-diagonal decomposition (cf. (3.17))
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a(u) 0

4.5}
0 QAW Iy (
1

with a(p) given by a(u) = QlA(y)(IX
0

defined through F(u, x) = A(u)x and condition (3.4).

+ D€¢(p, 0)) (cf. (3.9)) where ¢ 1is

It follows that formula

(2.6) can be proved with A(u) of the form (4.5). Set

b(w) = QAW Iy € Z(Xy, Yp)
1

and, for j > 0

aj - (1/3aF o) e 2xy, ¥

- ()
bj (1/31Ob (0) € I(Xl, Yo)

with this notation, the operator Aj in (2.1) has the bleck decomposition

a, 0
J
A -
j 0 b,
] h
Thus
. .
Vao o 3\
0 bOJ
[ ]
fal 0 h'
0 b
1
L 4 1}

‘- %3"‘.;.'..{' (‘}(‘i“. "\v’ 0 oy i
ST 8 .. i “""- W,
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From Theorem 3.1,

0

- 25 -

it is immediate that dim Keral'p = dim KerClp where

€ Isom (Xl’ YO),
o)
[ ]
1.
R =
P
ap_1
.

3\

. e z(xp,

p
Yy

)

the algebraic multiplicity vy is equally computed from A(u)

or a(u), anda_p plays the same role as-{'p upon replacing A(p) by a(u). There-
fore, the problem comes down to proving formula (2.6) in the finite dimen-
sional case. From the existence of a local Smith form, it is possible to
duplicate the proof given in [7, Proposition 1.15, p. 35] for the case when
a(p) is a polynomial.

Remark 1: If the algebraic multiplicity is defined, then A(g) 1is invertible
for |p| » 0 small enough. This follows from the decomposition (4.5) of

B(u)A(u)C(p) since a(p) is invertible for |u| » O small enough and QOA(0)|X

is

local Smith form. Conversely, if A(u) is analytic and A(u) is

fu] = O

invertible.

true.

Hence det a(u) has an isolated zero at u = O.

ite order,

The

through Lyapunov-Schmidt reduction of F(u, x) = A(u)x.

assertion follows

small

Invertibility

enough

of a(p)

1

is indeed ensured by existence of a

invertible for

(and A(O) is Fredholm with index zero) the converse is

Indeed, from (4.5) again, a(g) is invertible for |u| = O and analytic.

\

from Theorem 3.1

I'

so that the partial multiplicities of u = 0 in

since

0

a(u)

Necessarily, this zero has fin-

are defined.

a(p) is obtained from A(u)

---------
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a:§ 5. AN ALTERNATE PROOF OF THE KRASNOSELSKII-MAGNUS THEOREM :
o

- ' Taking A(u) = DXF(p, 0) with F of class Cl as in Section 3, we shall now 4
jzi give a proof of Theorem 2.2 in Magnus [13], a generalization of the famous

EEE theorem by Krasnoselskii, based on Lyapunov-Schmidt reduction. Bifurcation t
e

for the reduced equation 1is next proved using a standard argument. In his

-
»
»

:;j proof, Magnus also makes use of a reduction to the finite dimensional case,
E;E which differs from the usual Lyapunov-Schmidt procedure. The reason for this
o is that Theorem 2.1 seems to be difficult to prove using Magnus’ definition of
lgi: algebraic multiplicity (reviewed in Section 1). In complementing remarks, we ‘i
:52 chall also see that the smoothness assumptions can be weakened in a way
o )

depending of the partial multiplicities.

‘v
u."r’-.." h
.:f: Since A(Q). = Ao = DxF(O, 0) is Fredholm with index =zero by hypothesis, &
'\-:,_\
5::: let wus first observe that algebraic multiplicity of u = 0 in A(u) is defined
[l )
! upon merely assuming that no generalized Jordan chain can be continued inde-
\
':yg finitely. 1Indeed, the same is then true with a(u) = Def(p, 0) replacing A(u),
Q where f denotes any reduced mapping of F (cf. (3.6)), as it follows from argu-
P Y 8 g
1ON)
J ments 1in the proof of Theorem 3.1. From the results of Section 4 and Theorem
o
rﬁf} 3.1, the length of the generalized Jordan chains of A(u) is uniformly bounded,
1:§i which suffices to prove the claim. Moreover, the algebraic multiplicity of
W
® p = 0 in A(s) equals the order of u =~ 0 as a zero of det a(u). With Taylor's 3
2, \
}? formula and since f(u, 0) = 0, one has
oY
o
. “M‘
A f(p, e) = a(p)e + g(p, €) ,
f?? with g of class'f? since f is of class 131 and a(u) 1is smooth. Obviously, i
:\".: '.1
BN gy, 0) = 0 and D g(u, 0) = 0, If F (hence f, and also g) is of class t?,
[t ‘
o

bifurcation for f = 0 follows from applying (3, Theorem 7.1, p. 201] provided

»
PV Ly

' that u = 0 has odd algebraic multiplicity y. If F is only\gl and vy is odd, the

TRt
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. same conclusion holds. To see this, it suffices to observe that the same

- X
result in [3] remains valid if one makes use of the "strong" version of the v

‘E Implicit function theorem (see e.g. Lyusternik and Sobolev [12]) in the proof =

- of [3, Lemma 7.2, p. 202]. Accordingly, we have shown

Theorem 5.1: let F( = F(u, x)) be a'®' mapping from RXX to Y with X and ¥

v
k]

real Banach spaces, locally defined near the origin and verifying F(u,0)) = 0.

Suppose that DXF(p, 0) is smooth and that AO - DxF(O, 0) 1is Fredholm with

I: {
N7
e index 2zero. Finally, assume that the algebraic multiplicity v of u = 0 is
- :
I defined. Then, bifurcation occurs if vy is odd and the bifurcated solutions
contain a continuum.
e
x
é_ '

In a given problem, finding out the algebraic multiplicity y can be done

using Magnus' definition in terms of projections, or our definition in terms

p v 2 4 T

of generalized Jordan chain or else from the calculation of an appropriate

‘l
’

null -space according to formula (2.6). Whatever the option taken, the success

of the procedure depends much on what is actually known about the derivatives

-« ]

ot s

w
: A(j)(O). In any case, many corollaries to Theorem 5.1 can be proved formulat-
ll ing ad hoc hypotheses. We shall only mention one particular situation, namely
" when v = n( = dim Ker Ao) and n 1is odd. Obviously, v = n if and only if .
LE Ky = cc =k = 1. It is straightforward to check that this amounts to assum- :
ing o
‘ AIl(Range AO) N Ker AO =- {0} , (5.1)
;k and one finds again Theorem A of Westreich [20]), who has another proof, not
. involving algebraic or partial multiplicities. His Theorem B -- on bifurcation
: from a smooth curve -- is also a particular case of the results of the next
section. Note that condition (5.1) generalizes that of Crandall and Rabi-

nowitz in [5].

—-- e

LSRR AT v o f'.‘:a?.‘;_r\"... - .-’.\- VLR TN 6 AT AN q " -; LGS ,; LONEN 1‘,;!\%,4.-‘.;"\-\'\-"\-‘\u"\-“\ ',"-‘ ~'\~; L
T . A A B A A O g T R DA O OO 2T DN

h i i X X i ) .




;.Jl......

e
Pd

3
’ 'J .J .}.‘J

[k

Dy

HhANHS

Y

- 28 -

It is also worth mentioning that smoothness of DXF(p,O) is unnecessarilv
restrictive in Theorem 5.1. Indeed, assuming DXF(p, 0) to be of class r with
r > v is sufficient to obtain a local Smith form as in Section 4 and repeat
all other necessary arguments to prove Theorem 5.1. But even this assumption

can be weakened to r > k., (of course, r > y or r > x. can only be observed a

1 1

posteriori), although the method of Section 4 to obtain a local Smith form

fails. Assuming r > «,, reduction of the problem to proving bifurcation for

1
f = 0 remain true and the proof of Theorem 5.1 goes through provided that one

can show that det a(u) changes sign as 4 crosses 0. This is where the results

of Section 4 help in the smooth case. An alternate procedure is as follows:

write
.7
1 ] . K
1
aw) = ¥ 2 aW0) + 4 R (5.2)
j=0 37
with R(u) continuous and R(0) = 0. From the definition of « a(u) and the

l '
principal part of 1its Taylor expansion in (5.2), denoted by E(p), have the

same generalized Jordan chains. Observe in passing that a chain with length

< k., involves derivatives of a(u) of order < «

1 - 1 only, so that it is actu-

1

ally possible to check that no chain has length > a3 when a(u) 1is only of

[
class © 1. From the above, a(u) and E(y) have the same partial multiplici-
ties, hence the same algebraic multiplicity. As E(p) is a polynomial, it
possesses a local Smith form after identifying XO and Yl with R". This means

that there are smooth parametrized families ﬁ(u) and ;(p) of invertible opera-

tors with constant nonzeroc determinants such that

a(p) = m(uw)d(p)n(y)

~ xl Kn
and d(u) = diag (p ~, ... , s ). From (5.2)

~~1 --1 ~ 1o
m (w)a(w)n (u) = d(uw) + g R(w) , (5.3)
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with R(u) = aﬁl(p)R(p)a_l(y)‘ In particular, R(0) = 0. Now, for g = 0, d(u)

RS e

is invertible and

C :

T wr twawa T = 1+ s TR

Ry K X —IC,) K.—K

S but u 1a—l(p) - diag (1, u 1 Tt 1 n) has a continuous extension at
- el =

!! b =0, As R(0) = 0, we find that det(I + u "d "(u)R(p)) is positive for |u|

-

small enough. The above relation thus shows that (det a_l(p)) det a(u) has

l‘. e -
& the same sign for both 4 >0 and g < 0 with |g| small enough. If
- LY +eoe + < is odd, it follows that det a(u) changes sign as u crosses 0
N
- o~
~ since this is true of det d(u).
R
& Remark 1: Let X =Y and A(u) = (I - AOL) -~ pL with L € Z(X) compact and
- l/AO € Sp(L). The generalized Jordan chains of A(u) are usual Jordan chains
g . .t . .
of L corresponding to the eigenvalues l/AO of L, the i b chain of any canoni-
" cal set generates a cyclic Jordan subspace with dimension <o and
Y moRy b ocee ok is the dimension of the pgeneralized null-space of I ~ AOL,
: namely the algebraic multiplicity of 1/A0 in the usual sense. In this case,
' Theorem 5.1 coincides with Krasnoselskii’s, apart from extra regularity
¢ assumpctions. O
\.l
N
aY Remark 2: If dim Ker A0 = 1 (i.e. n = 1) more can be said about the structure
: of the bifurcated solutions and another criterion for bifurcation can be
¥ .
- found, see [l6] for details. O
'
v,
s,
s
t.,j
o,
"
'.
.
o
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6. INVARIANCE UNDER CHANGES OF VARIABLES AND APPLICATIONS.

We shall begin with a brief review of results on equivalence between
Banach space valued mappings. In the finite dimensional case, this notion
lies at the bottom of singularity theory. 1Its first appearance in bifurcation
theory dates back to the paper by Golubitsky and Schaeffer [8] in their study
of perturbed bifurcation. In [8], equivalence was used in connection with the
theory of unfoldings towards finding normal forms for a given problem but many
other important applications exist. One of them will be given here to a gen-
eralization of Theorem 5.1 when bifurcation is studied from an arbitrary

curve, not necessarily the trivial branch.

Consider four real Banach spaces U, V, U and V and a pair of sufficiently

smooth mappings

G:U=-V,G:0-7,
locally defined near the origin. The mappings G and G are said to be

equivalent if there are sufficiently smooth mappings
r : V - Isom (v, V) ,

p g-u ,
both locally defined near the origin and with p being an origin preserving

local diffeomorphism, such that

G(u) = T(uWG(p(w) , (6.1)
for U in a neighborhood of the origin in U. It is well known (and easily

checked) that the above notion encompasses the apparently more general notion

of equivalence in which

G(u) = ¥(u, G(p(u))) , (6.2)

- W Wi Wy M o
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where ¥ : UxV - V is a sufficiently smooth mapping with $(u, ) being an

origin-preserving local diffeomorphism of V to V.

Equivalence as in (6.1) preserves local bifurcation properties, for the
local zero sets of G and G are deduced from each other through the local dif-
feomorphisms p and p—l. A "good" bifurcation theorem should then complv with
the requirement that it equally applies with G or any mapping G equivalent to
G. To begin with, we will be interested 1in proving independence of the
hypotheses of Theorem 5.1 under changes of variable, i.e. under equivalence
(6.1) when U = U = RX, = V=Yand G=F. Clearly, Theorem 5.1 cannot be
stated without referring to the trivial branch and hence changes of variable
p(p, X) must leave the trivial branch invariant. Any such change of wvariable

has the form

plp, X) = (a(p, X) , £, X)) ,

with 6(;, 0) = 0, and hence D“a(O, 0) = 0, DXE(O, 0) & Isom (X). Setting

F(u, x) = 7(u, X)F(a(n, X) 6, X)) , (6.3)
an elementary calculation provides (note that DpF(p, 0) = 0 as a result of

F(p, 0) = 0)

D F(u, 0) = 7(, 0)D F(a(u, 0) , 0)D_£(k, 0) . (6.4)

For notational convenience, we shall set

A(p) = D F(p, 0) , A(p) = D F(u, 0)

and
B(u) = 7(w, 0) , C(w) =D £(u, 0)
Letting
o(p) = aip, 0) ,
o -\ ~ \'v'"\)' WTAT T -.- N R RN T N e )
‘t."l k'.h R \"' . A ‘l .(‘ AW 2 2SS S A .‘0.9'N 'H"".'h“t '0‘.‘0"-'.
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relation (6.4) becomes

N

o
LR 2
P

A(p) = B(u)a(o(m))C(p). =3

Assuming the mappings ;(-, 0), a(s, 0) (i.e. o) and £(+, 0) are smooth, the

Ao -
O hypotheses of Theorem 5.1 will equally be satisfied with F or F if the alge-
.;) braic multiplicity of u = 0 in A(y) equals the algebraic multiplicity of g = O
Mg
Iy >, —~ -~ ~
;x' in A(p). Indeed, A(O) is Fredholm with index zero if and only if this is true
‘f:-i
W of A(Q0) since E(O) and C(0) are isomorphisms. From Corollary 2.1 (see also
)
Remark 5 of Section 2) it suffices to compare the algebraic multiplicity of
N - ~ ]
}:} p =0and g = 0 in A(ps) and A(o(u)) respectively. Equality of these follows ;
-f‘:
'}:: from Remark 2 of Section 3 since o'(0) = 0. -
e R
< Now, consider a smooth mapping\?- ~(u) defined on a neighborhood of the
ij origin of some Banach space U with values in another Banach space Y. Suppose ”
\': —
5 that vt (0) = 0 and DF(O) is a Fredholm operator with index one such that )
;
e dim Ker DF(0) = n + 1 (n > 1) . (6.6)
.?}: ~ ,
S This implies that Dn(0) has rank-deficiency n. Suppose that a smooth curve
RS
;; u(p) with u(0) = 0 is known to be in the local zero set ofA , namely
19
o
f_:: sA(u(p)) =0, (6.7) i
J‘_..' ‘
:: where u'(0) = Uy » 0 (a condition for instance satisfied when u(u) 1is an *
-
,::, arclength parametrization). This situation is considered in [16] under the E-
M Y
Jéj extra assumption n = 1, but the entire analysis can be repeated verbatim. We
4
I} -
e shall therefore pass to the conclusions and refer the interested reader to iy
H _‘!
‘!h: [16, Section 4] for further detail. Differentiating (6.7), one finds
3 )
;j; ﬁi(O)uo =~ 0, namely ug € Ker DA(0). Choosing X to be an arbitrary complement -
:j: of Ruo in U, and for (4, %) in a neighborhood of the origin in RxX = U, set a
hk)
LX |
g F(u, x) =& (u(p) + X) .
1
L »
L)
LA 3 «
X j
N
- N
e A A A e T s
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Clearly, DYF(#' 0) = D?(O)]x is Fredholm with index zero while bifurcation
from the curve u(p) inA = 0 amounts to bifurcation from the trivial branch in

F = 0. The hypotheses of Theorem 5.1 must then be checked with

A(p) = DA |y
and whether or not they are satisfied is independent of the choice of the com-
plement X of the line Ruo (the tangent to the curve of kgown solutions at the
origin) as well as of the regular parametrization u(u). In particular, this
allows for an intrinsic definition of the algebraic multiplicity of the singu-
larity of ® at the origin, viewed in a smooth curve cf solutions to J = 0.

Assumptions of regularity onA and u(+*) can be weakened according to the com-

ments made in Section 5.
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VARIATIONAL BIFURCATION THEOREMS.

The question that most naturally arises in view of the results obtained
in Section 5 is whether the notions previously developed are also appropriate
for proving bifurcation theorems for general variational problems. That the
answer to this question 1is positive best illustrates the advantage of our
approach. Indeed, no such result is derived in Magnus {13] or 1Ize (9] and
neither the reference book by Chow and Hale [3] nor the recent monograph of
Rabinowitz {18] contains any such theorem, except of course for the special

class of nonlinear eigenvalue problems.

To begin with, we shall establish a bifurcation theorem for general vari-
ational problems in the finite dimensional case. More precisely, let
F = F(u, x) be a'C} mapping locally defined near the origin of R x R" with

values in Rn and of the form

F(p, x) = V@, x) , (7.1)
where J is some real-valued functional. Here and in what follows, "V" denotes
the gradient operator with respect to the variable x alone. We shall further

assume that F(u, 0) = 0 and set

A(p) = D F(u, 0) € Z(R") . (7.2)
Of course, A(u) is selfadjoint for every u. To make the question significant
of whether nontrivial solutions to F = O bifurcate from (0, 0), A(0) must be
singular. Suppose that A(u) is nevertheless invertible for |u| > 0 small
enough: then, the Morse index of A(u) (number of positive eigenvalues of
A(p)) 1is constant for pw > 0 and y < 0 with |u| small enough. Denote these
indices by h+ and h_ respectively. 1In Theorem 7.1 below, we show that the

condition h » h_ guarantees bifurcation. This will be obtained as a simple
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application of C. Conley’s theory to the (local) flow defined by the differen-

tial equation

dx
dt

In particular, neither the statement nor the proof of the theorem makes refer-
ence to partial or algebraic multiplicities. These will appear in connectiocn
with the condition h+ # h_ and used as a substitute for it in the infinite
dimensional case when the Morse index is no longer defined and when Conleyv’s
theory does not directly apply. Regarding the definition and properties of
Conley index, we shall make reference to the easily accessible book by Smoller

[19]. Another reference is of course Conley’s original monograph [&;.

Theorem 7.1: If h+ # h_, nontrivial solutions to F = 0 bifurcate from (0. 0).

Proof: Irrespective of the condition h+ # h , bifurcation obvioﬁsly occurs if
x = 0 1is not an isolated solution to F(O, ¢«) = 0. 1In the remainder of the
proof, we shall then make the non restrictive hypothesis that x = 0 is an iso-
lated solution to F(0, +) = 0. Then, it follows from [19, Theorem 23.32, p.
503] and the gradient nature of the local flow generated by (7.3)O that x = 0
is an isolated invariant set. Incidentally, note that the result we intend to
prove is unaffected by modifying F in such a way that F(u, x) 1is wunchanged
for, say, |x| €1 and F(g, x) = 0 for |x| > 2. Doing so allows one to speak
of the global flow generated by (7.3)” and makes available the simplified

approach taken in [19, Chap. 22]).

Let A5 denote the open ball with radius § > 0 and center 0 in R". From

(19, Theorem 22.18, p. 468 and Proposition 22.12, p. 464], A6 contains an iso-

lating neighborhood N with 0 € N. Here, "isolating muneighborhood" 1is wunder-

stood in the sense of [19, Definition 22.3, p. 460] (and not merely in the

5= = F(u, x) . (7.3)#
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extended sense of [19, Definition 23.4, p. 481]). Then, N remains an isolat-
ing neighborhood for the flow generated by (7.3)# for |u| small enough, and
the Conley index h(S“) of the isolated invariart set § C N, is independent of
4. As a result, one has Sp = {0) for either u > 0 or u < 0 (or both). Indeed,

suppose g > 0 and S# = {0}). Then, since A(u) is invertible, h(S“) - h+ (see

(19, pp. 503-504]). Similarly, if 4 <0 andS = (0}, h(S) = h_. Thus, if

S“ = {0) for both yu > 0 and u < O, h+ = h_, a contradiction. Because of the

gradient nature of the flow (7.3) 1)

S# # (0} must contain a solution to
F(u, x) = 0 different from x = 0: assuming that it does not, one finds that
S# contains a complete orbit. But this orbit must then tend to two different

rest points in both time directions (because F(u, +) is a gradient), one of

which is necessarily nonzero, a contradiction.

In summary, for every § > 0 and every g > 0 or p < 0 (or both) with |[u]
small enough, we have found a pair (u, x#) with x“ = 0, xy € S# CNC A5 and
F(u, x“) = 0. Since 6§ is arbitrary, the desired bifurcation property is esta-

blished. O

Remark 1: The condition h+ # h_is guaranteed 1if, for instance, det A(u)
changes sign as u crosses 0. Thus, Theorem 7.1 appears as a generalization of
the bifurcation theorem valid under the latter assumption, but only when

F(g, *) is a gradient. O

When the space R" is replaced by an infinite-dimensional (real) Hilbert
space X, the two problems arise that the Morse index is generally not defined
and that, in any case, the method based on Conley index is not applicable. A

natural procedure 1is to seek a reduction to the finite dimensional case in a

(1) Modifying F so that F(u, x) = 0 for |x| > 2 can obviously be
done without affecting F(u, +) being a gradient.
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form suitable for the application of Theorem 7.1. Naturally, and this is one
of the difficulties, the reduction must comply with the requirement that it
does not destroy the gradient nature of the problem. Also, conditions that
can be verified directly on the given problem rather than on the reduced one

must be given that ensure h+ » h , in the latter.

We shall retain the same assumptions on F as before, except that now R"
is replaced by the space X. We shall write F in the form
F(p, x) = A(p)x + H(p, x) . (7.4)
Since A(u) is selfadjoint, H(p, x) is the gradient of the functional
1
(p, x) = J(ps, %) - E(A(‘“)x' x) . (7.5)
Assuming that J and A are of classtz, it is obvious that & is of class Cz,
too, so that H is of class!ﬁl. Also, note that
H(up, 0) = 0 , DXH(#, 0) =0 . (7.6)

The following lemma is a straightforward but crucial generalization of
(3, Theorem 11.1]. Its proof 1is given for the convenience of the reader.
Before, let us recall that a selfadjoint Fredholm operator has necessarily
index zero. For this, see Kato [10], or Yosida [21]; the conclusion also fol-

lows from Deimling [6, p. 86].

Lemma 7.1: Suppose that A(Q) = Ay is a Fredholm operator (with index zero)

and Ker AO is stable under A(u) for u near the origin. Then, in the notation

of Section 3, if Lyapunov-Schmidt reduction is  performed with

X1 = Y, = Range A and Y, = Xy = Ker ag, the resulting reduced equation is

variational. More precisely, f(u, ¢) = 0 if and only if ¢ is a critical point

of the functional
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9
o )
:3? € € Ker AO + J(p, € + $(u, €)) (2) (7.7)
g
:~..‘~
;r: Proof: Since A(u) is selfadjoint and Ker AO is stable under A(u), so is
- Range A, = (Ker A )L. Denoting by Q, and Q, the projections onto Ker A  and
g,z 0 0 1 0 0
:Eﬁ Range AO respectively, according to the orthogonal decomposition
v
' \‘
. X = Ker A0® Range AO ,
-::: it follows that Q0 and Q1 commute with A(p). From this observation, it is
v
1
- easily found that the reduced equation is By,
~‘\-' :
. QA(p)e + QH(p, € + é(u, €)) =0, (7.8) 2
..:'h. '
TN with ¢(u, €) characterized by
o y
pc QuAWWIS(s, €) + QuH(p, € + ¢(u, €)) =0 . (7.9)
{ii On the other hand, as VJ = F, ¢ is a critical point of the functional (7.7) if N
b \
o and only if
TSR
L~
y (Fu, € + é(u, €)) , h + D ¢(u, €)+h) ~0 , Vh € Ker 4, .
L
'\$: But h and D€¢(p, €)+h being in Ker AO and Range Ao respectively, this reads 4
s :
\:_\
e (QF(s, € + ¢4, €)) ,h) =0, Yh € Ker A ,
D
£ J.' ¢
- (QF(k, € + (u, €) , D g(u, €)*h) = 0 , Vh € Ker A,
\:3 From (7.4) and (7.9), the second equation is automatically satisfied. The )
J‘~,
] above system thus reduces to the first equation alone, which is nothing but
W J
‘JQ; QlF(p, e + ¢(p, €)) = 0. From (7.4), this equation coincides with (7.8) and V
ALY
AN
:Nj the proof is complete. O
) 'y v
0.
N : Remark 2: Since DXH(y, 0) = 0 from (7.4) and A(u) DXF(p, 0), differentiating )
Ly \
e ]
e (7.9) yields
ui,:
l. »
Y (2) Of course, this statement is only local.
xj{: N
v :
o
o e
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e
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QpA(#)D é(p, 0) =0
Hence D€¢(y,0) = 0 since QOA(y) € Isom (Range AO). Note however that this

result heavily relies on the assumption that Ker A  is stable under A(u):

0

otherwise, (7.9) is not valid. O

To make Lemma 7.1 available in a general framework, note that the wvaria-
tional character of the equation F(u, x) = 0 is not affected by changing

F(p, x) into

- *

F(u, x) =M (WF(p, M(p)x) , (7.10)
where M(u) is any parametrized family of invertible operators. Indeed,
?(p, X) = Vj(p, X) where

J(s, x) = J(w, M(p)x) . (7.11)

Changing F into F preserves the trivial branch and, in this process, A(uy) and

H(u, x) are transformed into

A(p) =M™ (u)AM(p) (7.12)

and

A(u, %) = M (HGE,M@X) |, (7.13)
respectively. The question that now arises is to find conditions on A(u)
ensuring that a parametrized family M(u) as above can be found so that A(u) as
in (7.12) leaves Ker A(0) invariant. As shown in Lemma 7.2 below, a very sim-

ple sufficient condition is that A(p) be analytic.

Lemma 7.2: Suppose that A(u) is an analytic family of selfadjoint operators

with AO = A(0) Fredholm (with index zero) and A(u) invertible for [u| = O

small enough. Then, there is an orthonormal basis of Ker Ao and an analytic

- *
family M(u) of invertible operators of £(X) such that A(u) = M (u)A(u)M(p) has

~
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the block diagonal representation

D(w) 0

with B(u) € Z(Range Ao) analytic and invertible and D(u) € L(Ker AO) of the

form
K [
= . 1 n
D(p) = diag (alp s e, any ) (7.15)
in the given basis of Ker Ay where Kys oon s K (n = dim Ker AO) are the par-

tial multiplicities of 4 = 0 in A(p) and Uj =+1,1<j<n.

Note: This statement is different from that of Section 4 guaranteeing

existence of a local Smith form.

Proof: Since AO is Fredholm and selfadjoint, 0 is an isolated eigenvalue of AO

with finite multiplicity n = dim Ker Ao. As A(p) is analytic, it follows from
Kato {11, pp. 122 and 386] that there is an analytic family U(u) € Z(X) of

unitary operators with U(0) = I, such that

X
~ *
A(p) = U (wAEIU(p) (7.16)
has the representation
A D(u) 0
A - - ,
() 0 B(u)
relative to the decomposition X = Ker Ao ® Range AO. In addition, D(u) has the
form
D(u) = diag(kl(#). cee An(#)) , (7.17)

in some orthonormal basis of Ker AO, with Aj(-) being analytic, 1 < j < n.

Although Kato’s results are established in the case of a complex Hilbert

space, the construction of U(u) as a solution to a differential equation can

~

equally be carried out in the real case. Observe that D(0) = 0 since

1
4
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A(0) = A, from U(0) = I_,. Since A(u) is invertible for |u| =0 small enough,

0 X

it follow from Remark 1 of Section 4 that the partial and algebraic multipli-

cities of 4 = 0 in A(u) are well defined. From Corollary 2.1, they are the
same in A(u) and A{u) and, further, in A(g) and D(u). To prove the latter

A A

statement, note first that A(0) and D(0) = O have null-space Ker AO. Let then
e(p) be a root function of A(u) of order j. Setting e(p) = eo(p) + el(p)
one has e(0) = eO(O) = 0 and eo(p) is

according to X = Ker A, ® Range A

0 0’

obviously a root function of B(p) whose order is no less than j. Conversely,
any root function ;O(p) of B(p) is also a root function of ;(p) with the same
order since ;(p);o(p) - a(p);o(p). Equality of the partial multiplicities is
an easy consequence of these observations, wupon considering root functions

corresponding to elements of canonical sets of generalized Jordan chains.

After rearranging the Aj's in (7.15), which does not affect previous

results provided that the vectors of the orthonormal basis of Ker A, are rear-

0

ranged accordingly, one then has

K.
ORI N SRR
with dj(-) analytic and dj(O) » 0 (see Section 4 where a similar argument is

used). Thus, we may write

nj 9
. = g, 5. ,
J(u) 3# J(/u)

with 6j(p) - |dj(p)|Li and aj = sgn dj(O). From dj(O) » 0, 631(-) is analytic.

Finally, setting

A(p)y O
S(p) = 0 |
. -1 -1 . .
where A(u) = diag (6l w), ... , 6n (u)) in the same basis of Ker AO' one

finds the desired decomposition (7.14) with B(p) as in §7.15) by taking
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. ing € with Its decomposition in the suitable basis of Ker A(0)). From the
e form of D(u) given by (7.15), it is immediate to check whether some change of
T
NSV
e the Morse index occurs as u crosses 0. If so, Theorem 7.1 guarantees bifurca-
e ) = o , . .

N tion. Note that D(u) is invertible for u # 0 as is required by Theorem 7.1.
~.-

.‘-\
~“:

ﬁ: It is worth expanding a little on the condition ensuring that the Morse
."\
> . = X .
0. index of D(u) changes as u crosses zero. This depends on both the partial
N,

g multiplicities ., and the o,'s. Clearly, those terms involving an even x, do
o P j j y g j

i.l

?}: .,
W not contribute to any modification of the Morse index. On the contrary, o.u J
AL J
.i' does change sign as p crosses zero if Kj is odd, but the Morse index will not
L)

.
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M(p) = S(WUw). D

Assume then that A(u) = DXF(p, 0) is aralytic with A(u) invertible for
|s| = 0 small enough. Choosing M(u) as in Lemma 7.2 and with F given bv

(7.10), bifurcation in the equation F = 0 occur if and only if it occurs in

the equation F = 0. None of the assumptions on F is affected by so changing F

into F: 1in particular, this does not affect the partial multiplicities.
Doing so reduces the problem to the case when Ker A(0) is stable under A(y)
for |u| small enough. From Lemma 7.1, bifurcation in F = 0 amounts to bifur-

cation in f = 0, where f(u, ¢) is the gradient of the functional

€ € Ker A(0) =+ J(p, € + ¢(y, €))
with é# as in Lemma 7.1. Now, recall that not only ¢(g, 0) = 0 but also
D€¢(p, O0) = 0 (see Remark 2). Using this along with F(u, 0) = 0 (i.e.

DXJ(p, 0) = 0) a straightforward calculation shows that f(u, 0) = 0 and

Dcf(p, 0) = A(p)e , ¥ ¢ € Ker A(O)
But, since the above holds upon changing F into f, A(u) must be understood as

being A(u) in (7.14). Thus, for e € Ker A(0), A(u)e = D(u)e (after identify-




change if an equal number of eigenvalues of 5(p) cross the origin in either

direction, namely if Y o, = 0. This condition is both necessary and suffi-
njodd

cient for the Morse index to be unchanged. The criterion for bifurcation is

then that ) o, = 0 or, equivalently
njodd

Z (1 + (-1) J)a =0 . (7.18)
J-1

Remark 3: A simple examination of the proof of Lemma 7.2 reveals that the

K.
- A(0), and that o, 4 J is the

Aj(p)’s in (7.17) are the eigenvalues of AO
first nonzero term in the Taylor series of Aj(p) about the origin, apart from
the multiplicative constant |dj(0)|. In other words, aj is the sign of the
first nonzero derivative of Aj(-) at the origin, and condition (7.18) amounts

to saying that the eigenvalues of A(u) cross the origin in one direction more

than in the other as g crosses zero. 0O

For convenience, the family (al, e, an) obtained in Lemma 7.2 will be

called a sign characteristic of A(u) (at p = 0). Sign characteristics are

unique to within permutations of (1, ... , n} compatible with £y > eee > K-
0f course, condition (7.18) is independent of the representative for the sign

characteristic. We shall summarize the results obtained above in the follow-

ing theorem.

Theorem 7.2: let J : RxX - R be a CF functional and set F(u, x) = VJ(u,

Suppose that F(u, 0) = 0 and A(u) ~ DxF(#, 0) is analytic and invertible for

u # 0 near 0, with A(0) Fredholm (with index zero). Finally, suppose that the

condition

n
T (1 + (-1) J)a 0,
j=1

. , RPN :
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holds, where X1 2 +c > & are the partial multiplicities of 4 = 0 in A(w)

]
P

" T

‘I

(n = dim Ker A(0) > 1) and (01' e, on) is any sign characteristic of A(u)

at 4 = 0. Then, bifurcation in F = 0 occurs at (0, 0).

)

Eig In practice, Theorem 7.2 has the inconvenience of requiring A(g) to be
;2{ analytic. Even if this should not be a severe restriction in many applica-
‘::i: tions, it would be desirable to have a result that, at least, does not require
izf_ checking analyticity of A(p). It turns out that any problem of the form con-

N

¥ sidered here involving an operator A(u) = DXF(p, 0) which is smooth - or even
:?S smooth enough - with A(0) being Fredholm and such that the partial multiplici-
;EES ties <y > eee > k ae well defined, is equivalent to a problem in which A(u)
:if: is a polynomial (hence analytic). This result, that shows how Theorem 7.2 can
quf be applied in the nonanalytic case as well, is now established.
L7
'55? Exposition 7.1: Suppose that A(u) is a smooth (or smooth enough) family of
{ : selfadjoint operators with Ay = A(0) Fredholm (with index =zero) and set
3%35 dim Ker Ay = n > 1. Suppose that the partial multiplicities Ky 2 °00 2K, of
;;i; 4 = 0 in 4(u) are well defined. For every integer k > £y, set
~ -
9) .
': M = X 3‘—J, a2 0y

‘izi Then, there is a smooth (or smooth enough) family Tk(p) € L(X) of operators
j{‘ invertible for |u| small enough such that

>

b

O.Y o
ol

*
F.‘ " -
e A (w) = T (B)A()T, (B)
& :3
Q.- Proof: To begin with, observe that the partial multiplicities Kiv oo, K _are
"-
Y
{tx the same for A(u) and Ak(p). This follows from finiteness of 1 involving
1\"
o 3
::J only the derivatives A(J)(O), 0<j< Ko which, also, are all that is needed
\d
P
N to characterize all possible generalized Jordan chains. Write
. '“l,
P
Y
Y
L)
¢'|
0.
S
v
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k+1
A(p) = Ak(#) + s R(u) ,
wichi R{(u) smooth. Recall that Ak(u) is invertible for |u| > 0 small enough

(cf. Remark 1 of Section 4). Hence, for |u| > 0 small enough

A(p) = Ak(u)(I + Ck(#)) ' (7.19)

wherve

k+1 -1
Clw) = u AL (BR(p)
Since Ak(p) is selfadjoint and AO - Ak(O), one may use Lemma 7.2 with Ak(p)

and write

AB) = MR (M ()

with Mk(p) being analytic in p and invertible for |u| small enough (including

g = 0) and with

) Dy (w) 0
k
where
= "1 ®n
D, (w) = diag(alu b s OB )

and Ek(p) € Z(Range AO) (recall that Ao - Ak(O) as well) is analytic in p and
invertible for |u| small enough. These properties immediately show that
pk+lA;l(p), and hence Ck(p) above, is smooth and vanishes at the origin since

k > Kq-

Since both Ak(p) and A(u) are selfadjoint, it follows from (7.19) that

AW = AT+ C (W) = (1 + CL(w)A (W)

and hence

AL (WIC (B) = Gy (WA (1)
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Therefore, more generally, for every integer p > 0

AL () (G (u))P = (CL(w))PA () | (7.20)

As Ck(O) = 0, the operator

(1 +C (1) & 2(X)

is well defined for |u| small enough through the series

-]

(1+Cc ) = La (€ un?, (7.21)
p=0 P

where the real coefficients ap are as in the Taylor series of (1 + x)Li at

x = 0.
Combining (7.20) and (7.21), one finds

A (1 + ()™ = [T+ 6 )1 A (W)

This shows that (7.19) may be rewritten as

AG) = [(T + G () ™A () (T + ¢, (u))
b k(B A (p k(A .

The desired result follows by taking

b
Smoothness of Tk(p) is ensured by smoothness of (I + Ck(p))%, the latter
resulting from smoothness of Ck(p) and normal convergence of the series in

(7.21) (for |u| small enough). O

The way Proposition 7.1 can be combined with Theorem 7.2 to prove bifur-
cation in the equation F = 0 when F(u, 0) = 0 and A(p) = DXF(p, 0) verifies
the assumptions of Proposition 7.2 is clear: with Ak(p) and Tk(p) as above,

set

F (s, %) = Ty (WFG, T (%)

PP WY )
k)
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then, Fk(p, 0) = 0 and Dka(u, 0) = Ak(u) is analytic. Moreover, Fk(p, x) is

the gradient of the functional

Jk(p, x) = J(p, Tk(#)X)

As Tk(p) is invertible for |u| small enough , bifurcation in F = 0 occurs if

and only 1if it occurs in Fk = 0, and bifurcation in Fk = 0 may be examined

i through Theorem 7.2.

{: n K.

- Remark 4: If X = Rn, the condition Z (1 - (-1) J)a, = 0 where (al, e on)

j=0 ]

?? is a sign characteristic of Ak(p) at y = 0 is equivalent to saying that the
Morse index of Ak(p) changes as u crosses zero. This follows from the argu-

- K.

- ment that the ajp Jrg represent (essentially) the dominant term of the eigen-
values Aj k(p) of Ak(p) (see Remark 3). From Proposition 7.1, it is easily
inferred that, in addition, this condition is equivalent to saying that the

ii Morse index of A(u) itself changes as u crosses zero. Indeed, A(u) and Ak(u)
are congruent through the invertible operator Tk(p), which can only happen if
A(p) an Ak(p) have the same number of positive and negative eigenvalues (as is

. well known) and hence the same Morse index. Thus, the combination of Theorem
7.2 and Proposition 7.1 yields again a particular case of Theorem 7.1 (in

! :j which existence of partial multiplicities is not required). Also, the above

A n K.

arguments easily yield that the condition Z (1 - (-1) J)a. # 0 is independent
S j=0 J

" not only of the sign characteristic of Ak(p) at y = 0 but also of the Taylor

.

;E polynomial Ak(p) provided that k > K- Although it is natural to conjecture
that the same result is true if X is an infinite dimensional Hilbert space, we

« have not found a completely general proof of this as yet. O

a

JE Many bifurcation theorems can be derived from the combination of Theorem
. 7.2 and Proposition 7.1 by formulating assumptions that guarantee that the
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‘iz partial multiplicities are well defined and that condition (7.18) holds. For :
E instance, assuming that the partial multiplicities are well defined and that -
fa
‘~‘ the algebraic multiplicity v = £y + oeee + £ is odd yields bifurcation. =
,;t Indeed, v is odd if and only if an odd number of x,’'s are odd and, if so, con-

dition (7.18) is necessarily satisfied. This result is nothing but Theorem

~ 5.1 for a wvariational problem. Another (new) bifurcation theorem whese E%
-y .
~£: hvpotheses should be especially easy to check in practice and that can be
:if obtained according to this procedure is as follows. tﬁ
?%j Theorem 7.3: Let J : RxX - R be g.e? functional and set F(u, x) = VJ(u, x). E?
EE Suppose that F(u, 0) = 0 and A(p) = DXF(y, 0) is smooth (or, more generally, -
: tl; e.g. ifJ i_sC3). Suppose that A(0) is Fredholm (with index zero) and ::-;
'ié that A'(O) is positive definite on Ker A(0) = {0). Then, bifurcation in F = 0 -
[~ e
‘:E occurs at (0, 0). "
::9 ~3
(-_ Note: Changing F into —-F shows that the result is valid upon replacing “"posi- -
;35: tive definite" by "negative definite". For another generalization, see Remark
ﬁf;i 5 later.
;:i: Proof: First, we shall show that no generalized Jordan chain of A(ux) has gg
T
t\? length >1. This ensures that ‘j =1, 1 <j<n(n=dim Ker A(C)). Other- iy
' wise, one can find e, € Ker A(0) - {0) and e, € X such that -

0 1

4 '/../l ‘/: .,'( o “A. ..“.).

A(0)e, + A'(O)eo -0

P

[ XN
£ A

Hence

f J

(A(D)e,, e)) + (A'(O)eo, e ) =0

0’

But (A(O)el, eo) - (el, A(O)eo) =0 from ey € Ker A(Q). Thus, one finds

AL

w s

(A (O)eo. eo) =~ 0, in contradiction with eo = 0. Replacing A(u) by, say,

Ly

E. h
_‘""‘-

- - - - 14 » R S o ﬂv »" -f' L
A.-.,"M oy " *" " ﬁm* v m&mjﬁ'&h ’ JJA Amm ﬂ\'_\ .':ah'f\'(



Ay () = A0) + pa (0)
does not affect the hypotheses on A(u), nor the partial multiplicities. As
explained before, Proposition 7.1 allows one to reduce the problem to the case

when A(u) is analytic. The next step consists in proving that the sign

(€]

characteristic of A(u) at o =0 1is (1, 1, ... , 1). 1If so, condition (7.1

is trivially fulfilled and bifurcation follows from Theorem 7.2.

In the assumption that A(u) is analytic, let (Aj(p)) denote the familv of
eigenvalues of A(u) and consider an orthonormal family (xj(p)) of associated
eigenvectors. The kj’s are analytic in ug and it is a standard result that the

X.'s can be taken analytic, too. Differentiating the identity

A(u)xj(u) = lj(#)xj(#)

a: u = U vields

A (0%, (0) + A(0)x.(0) = A.(0)x.(0) + A.(0)x.
( /KJ( )+ A( )XJ( ) J( )xJ( ) + J( )XJ(O)

From lxj(p)| - 1, one finds

(0), x.(0)) = 0
(xJ( ) xJ( )

Hence

X;(O) = (A'(O)xj(O), Xj(o)) + (A(O)X;(O), Xj(o))
But (A(O)xj(O), xj(O)) - (xj(O), A(O)xj(O)) =0 from xj(O) € Ker A(0) and we

are left with

Ai 0) = A' 0)x.(0), x,(0)) >0
J( ) (A ( j J(
Since Uj is the sign of the first nonzero derivative of Aj at the origin (cf.

Remark 3), one has (al, Cee an) = (1, ... , 1), as desired. O

Remark 5: More generally, the proof of Theorem 7.3 can be repeated to show

that bifurcation is guaranteed if the nondegeneracy condition (5.1) (ensuring
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Kl - see = Kn = 1), namely

(&' (0)) L(Range A(0)) N Ker A(0) = (0) ,
is satisfied and if the (nondegenerate) operator PA’(O)P € L(Ker A(QO)) where P
denotes the orthogonal projection onto Ker A(0), has nonzero Morse index.
This is of course the case if n is odd, a particular case that remains valid

when F is not a gradient as was seen in Section 5. O

Remark 6: Theorem 7.3 is a very particular case among the bifurcation theorems
that can be deduced through the combination of Theorem 7.2 and Proposition

7.1. Still, it trivially contains the example when

A(p) = g+ I -L,
and L is selfadjoint, AO is an isolated eigenvalue of L with finite multipli-
city. Apparently, this was the most general situation to be found in the

literature (e.g. Section 4.11 in Chow and Hale [3]). O

It should not be inferred from Theorem 7.3 that the partial multiplici-
ties of y = 0 in A(s) and the sign characteristic(s) can always be determined

from the restriction of the quadratic form (A(p)x, x) for x € Ker A/0).

Con-
sider for instance the following counter example: Let X = Ra and
3 2 4 ]
b+ u 0 -4+ u 0
3 2 4
1 0 B - 0 B - p
A(p) =
2 4 5
1 +u |- +u 0 uo o+ 1 0
0 - 0 ey
Then, A(us) has eigenvalues u3 (double) with eigenvectors (1, 0, -u, 0) and

(0, 1, 0, =), 1 (simple) with eigenvector (s, 0, 1, 0) and -1 (simple) with

eigenvector (0, u, 0, 1). Obviously, A(u) verifies the conditions required in
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N Theorem 7.2 since n = dim Ker A(0) = 2, Ky = Ky = 3 and g =0, " 1. Now,
-
with x = (xl, x2, x3, x&), Ker A(Q) consists of those vectors of the form
ﬁ (xl, xz, 0, 0). For such a choice of x, one has
P s 2 2
b (A(@)x, x) = > ((p + l)xl + (g - l)xz}
b
1 + u
! This quadratic form is represented by the matrix
! r-. .
. 2 u+ 1 0
- s
" 1 + pz 0 -l
- with eigenvalues ;42(;; + 1)/(1 + pz) yielding the wrong values Ky TR, T 2,
W
A - - —
: 9y 1, o, 1
’ ™
.
;':. As a conclusion, we shall now show that the condition
n K, )
-::: Y (1L - (-D) Jys. » 0 in Theorem 7.2 is sharp. Take X = R” and, with
. j=1 J
- X o= (%), %))
o
.' 3 2 3 2
' F(p, x) = (;4x1 + x2 + 3x1 9r = pxz + x1 + 3xlx2)
=
- Then, F = VJ with
b3
1 2 2 3 3
! J(u, xX) = 2;;(x1 - x2) + xlx2 + xlx2
Clearly,
- u 0
. Alp) = |, —ul
so that Ker A(0) = Rz, K] = Ky = 1, o, = 1 and oy = -1. Thus, here,
:;; 9y + o, = 0 and, actually, no bifurcation occurs. Indeed, F(u, x) =0
o requires F( X)e (X x,) =0 mel xA + 6)(27(2 + xa 0 f i
) q M, 2 ¥ , na y 1 1% 9 , orcing
1):
o Xp =% =0 )
d
t'\'-{ The results of this section can be extended to the case when bifurcation
is studied from an arbitrary smooth curve (4, x(u)) since changing x into
Y
o
4
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dy -‘o".‘c .’f'-'t';\!.a’l..o'l!u L N .o‘d“'-s DAY AN “ ,t.-t‘:t':‘(l'q UL o O O ARA ,o’i-’t:‘;'.“on':‘l. -h"‘..'h. o ,‘!:“t:‘,:?"c.l'\"

A T YR A A A"




- - A . A " B Ale Al “B e il S SkaCAle Aha-iaC Ale" Ale Al She Bl |

- 52 - o

'I"
B

X + x(p) does not affect the variational character of the problem and allows

for a reduction to the case when bifurcation is studied from the trivial

ik

branch.
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